JMU is hosting an REU program this summer in computer science. Sarah Ciresi, a rising senior at Georgetown, is working on a project to develop a low-cost 3D scanner for capturing soap bubble configurations. You can follow her progress here.
To aid her work, we’ve been developing a library for inversive geometry on which is (heavily) based on the structure formulated in Sharif Ghali’s excellent book Introduction to Geometric Computing. The goal is to make our library public at the end of the summer.
Ghali covers a lot in his book, including the development of some spherical geometry (though his “circles” are really only the “great circles”), and an implementation of the oriented projective space as formulated in Jorge Stolfi’s PhD thesis and subsequent book. This oriented projective space is really the space of rays in
.
In this post we assume some familiarity with homogeneous coordinates of points in and their representation in
. Readers unfamiliar with these should check out “Introduction to Geometric Computing” for a very well thought out introduction. (Perhaps we’ll post a video on this sometime.)
Representing disks on the sphere
For our purposes, we needed more spherical geometry than Ghali’s introduction provides. Specifically, we work with circles on which are not necessarily great circles, and we also need our circles to be oriented, meaning that there is a given direction along the circle that is treated as counter-clockwise. Another picture of this is that instead of oriented circles, we are dealing with disks, which are the oriented circles along with the region bounded on the left of the circle (where “left” is defined with respect to the circle’s counter-clockwise orientation).
Now, notice that any circle on the sphere
can be represented by the plane
whose intersection with
is
. This, in turn, is the intersection of the hyperplane
in
with 3D unit sphere in the the
level sub-space. (If it seems like we just jumped into 4-dimensions out of nowhere, don’t worry, it will make sense in a minute.) Thus, we give coordinates to a circle
on
by specifying the 4-tuple of coefficients of the hyperplane
. Notice that multiplying all the coefficients by any fixed
does not change the circle represented since
.
To obtain disks from such a representation, we adopt the convention of Stolfi and treat and
as the same disk if and only if
. Our convention is to identify the disk incident to
with area less than
with those 4-tuples where
and those with area greater than
with those 4-tuples where
. (
is a great circle, and then the direction of the 3-vector
is used to identify the disk.)
One of the nice things about this representation, is that several computations become trivial. In the following let represent a disk
with boundary
For instance:
- The Euclidean center of
(i.e. the center in Euclidean 3-space, not on the sphere
) is given by the homogeneous coordinates
, (the 3D point
where
).
- The spherical center of
is
where
is defined as above.
- The Conical cap of
, which is the apex of the cone tangent to
at
is given by the homogeneous coordinates
. If
, then this corresponds to the 3D point
, and if
, this corresponds to the point at infinite at the endpoint of the ray
. (For the uninitiated, this is the power of the homogeneous coordinates–we can represent points at infinity as if they are any other point. But that is a matter for another post.)
The Inversive Distance
One of the main functions we work with in inversive geometry is the inversive distance between two circles. The usual way of defining this for circles on the sphere is:
where is the spherical center of
and
is its spherical radius (for
) and
is the spherical angle between
and
.
Given our representation of circles as the 4-tuples and
, the inversive distance becomes
which is simply the between the vectors
and
under the (3,1) Minkowski inner product.
In other words, circles on the sphere endowed with the inversive distance are a geometric picture of vectors in space-time endowed with the usual Minkowski inner product!